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Observation of Spatially Coherent Polarization Vector Fields
and Visualization of Vector Singularities

Y. F. Chen,* T. H. Lu, and K. F. Huang
Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China

(Received 6 September 2005; published 23 January 2006)
0031-9007=
We present experimental observations of polarization vector fields from a highly isotropic microchip
laser with a large Fresnel number. The experimental polarization vector field leads to complex entangle-
ment of spatial structures and polarization states. We theoretically derive the representation of generalized
coherent states to reconstruct the experimental polarization-resolved patterns. The analytical and precise
reconstruction enables the vector singularities to be clearly visualized.
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Recent rapid advances in technology have driven a
critical inspection of coherent wave properties in meso-
scopic physics. Phase singularities in scalar waves, known
as wave front dislocations, play an important role in mod-
ern physics, and are observed in quantum and microwave
billiards [1], quantum ballistic transport [2], linear and
nonlinear optics [3], and superconducting films [4], sym-
metrically confined superfluids and Bose-Einstein conden-
sates [5], and liquid crystal films [6]. Currently, interest is
focused not only on the phase singularities but also on the
polarization singularities, known as wave front disclina-
tions [7]. As pointed out by Freund [8], there are two types
of singularities of the polarization vectors of paraxial
optical beams: vector singularities and Stokes singularities.
Vector singularities are isolated, stationary points in a
plane at which the orientation of the electric vector of a
linearly polarized vector field becomes undefined. The
nature of the vector singularities has been studied in co-
herent optical waves with the correlated behavior of spatial
structures and polarization state [9]. However, the experi-
mental observations were almost restricted to low-order
transverse modes [10]. Until now there has been no experi-
mental evidence of vector singularities involving the en-
tanglement of polarization and spatial structures in high-
order Gaussian beams.

Recently, a diode-pumped microchip laser has been em-
ployed to perform analogous studies of coherent phenome-
non in scalar waves [11]. In this Letter, we demonstrate
experimental observations of polarization singularities
from a highly isotropic microchip laser with a large
Fresnel number. The experimental polarization vector field
is found to be made up of two linearly polarized modes
with different spatial structures that are phase synchro-
nized to a single frequency. With the extension of the
SU(2) coherent states, we analytically reconstruct the
two orthogonally polarized spatial structures and display
the formation of vector singularities in a perceptible way.

In this experiment, the laser system is a diode-pumped
Nd:YVO4 microchip laser with a ring-shaped pump pro-
file. The resonator configuration is basically similar to that
used in Ref. [12]. Since the YVO4 crystal belongs to the
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group of oxide compounds crystallizing in a Zircon struc-
ture with tetragonal space group, the Nd-doped YVO4
crystals show strong polarization dependent fluorescence
emission due to the anisotropic crystal field. The fourfold
symmetry axis of the YVO4 crystal is the crystallographic
c axis; perpendicular to this axis are the two indistinguish-
able a and b axes. Therefore, our Nd:YVO4 crystal is
precisely cut along the c axis for high-level transverse
isotropy. It is worthwhile to note that our gain medium is
different from the conventional Nd:YVO4 crystals that are
cut along the a axis to use the largest stimulated emission
cross section for lowering the lasing threshold. The trans-
verse patterns are measured with a CCD camera and an
optical spectrum analyzer is used to monitor the laser
spectra.

Experimental results reveal that the transverse patterns
were localized on the elliptic orbits when we used an
output coupler with the reflectivity of 98% in the laser
cavity [12]. However, the transverse patterns were usually
the extended structures restricted by the hyperbolic caus-
tics when we used an output coupler with the reflectivity of
99%. A noteworthy finding is that adjusting the pump
beam delicately can generate the lasing modes to be
made up of two distinct hyperbolic patterns with orthogo-
nal linear polarization. In other words, the transverse pat-
tern is linearly polarized, but the polarization is spatially
dependent. Figures 1(a)–1(d) show the experimental
polarization-resolved patterns in the 0�, 45�, 90�, and
135� direction. It is found that the entanglement of spatial
structures and polarization states forms an optical vector
field and leads to the transverse patterns to be polarization
dependent. The basic requirement for a vector polarization
pattern is that the orthogonal polarization modes with
different spatial patterns are phase synchronized to a com-
mon frequency. The measurement of the optical spectrum
verifies that the observed transverse pattern is phase syn-
chronized to a single frequency at 1064 nm. We believe
that the present experiment provides the first observation of
a vector pattern involving the high-order Gaussian beams.
Since direct measurements of polarization vector filed are
currently not feasible, we focus on deriving the analytic
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FIG. 1 (color online). Experimental polarization-resolved pat-
terns (a) 0� polarization, (b) 45� polarization, (c) 90� polariza-
tion, and (d) 135� polarization.
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representation for the wave functions of experimental hy-
perbolic patterns to visualize the polarization vector filed.
Although the nodal-line structures of the experimental
hyperbolic patterns are somewhat similar to that of eigen-
states in the elliptic quantum billiard [13], the confinement
conditions for both systems are utterly different. So far, the
wave functions for the hyperbolic modes in the spherical
resonators have not been explicitly explored.

The wave functions for the paraxial fields in the spheri-
cal resonators can be expressed as Hermite-Gaussian (HG)
function with Cartesian symmetry �HG

m;n�x; y; z�, where m
and n are the indices of x and y coordinates or Laguerre-
Gaussain (LG) function with cylindrical symmetry
�LG
p;l �r; �; z�, where p and l are the radial and azimuthal

indices [14]. It is well known that the paraxial wave
equation for the spherical resonators has the identical
form with the Schrödinger equation for the two-
dimensional (2D) harmonic oscillator [14]. The SU(2)
coherent states for the 2D harmonic oscillator are well
localized on classical elliptic trajectories [15]. Not only
in the 2D harmonic oscillator, the SU(2) coherent states
have been shown to play a vital role for the quantum-
classical connection in the 2D quantum systems [16]. In
terms of the HG modes, the SU(2) coherent states for the
elliptic modes are expressed as [15]

�CS
N �x; y; z;’� �
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where the parameter ’ is the relative phase between vari-
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ous HG modes and is related to the eccentricity of the
elliptic trajectory. As shown in a variety of integrable 2D
quantum billiard systems, the phase factors ’ in the SU(2)
coherent states play an important role in the quantum-
classical connection [16]. It has been confirmed that the
experimental elliptic patterns agree very well with the
SU(2) elliptic states [12]. From Eq. (1), the coherent state
�CS
N �x; y; z;’� with ’ � 0 can be derived to be the diago-

nal HG mode �HG
0;N�x

0; y0; z�, where x0 � �x� y�=
���
2
p

and
y0 � �x� y�=

���
2
p

. On the other hand, the coherent state
�CS
N �x; y; z;’� can be transformed into the LG mode

�LG
0;N�r; �; z� when ’ � �=2. Briefly, the SU(2) elliptic

mode is transformed from a diagonal HG mode
�HG

0;N�x
0; y0; z� into a LG mode �LG

0;N�r;�; z�when the phase
factor ’ varies from 0 to �=2.

The SU(2) coherent states can only be used to describe
the elliptic patterns. To explain the experimental hyper-
bolic patterns, we develop the generalized coherent states
(GCSs) to be related to the transformation from a diagonal
HG mode �HG

p;p�l�x
0; y0; z� into a LG mode �LG

p;l �r; �; z�
with a phase factor ’. Mathematically, the diagonal HG
mode �HG

p;p�l�x
0; y0; z� can be expressed by a summation of

nonrotated HG modes �HG
2p�l�k;k�x; y; z� with k �

0; 1; 2; . . . ; 2p� l: [17]
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where the summation over s is taken whenever none of the
arguments of factorials in the denominator are negative.
From Eq. (2), successive HG modes �HG

2p�l�k;k�x; y; z� of
the summation can be found to be in phase. In a similar
way, any LG modes �LG

p;l �r;�; z� can be decomposed into a
sum of HG modes �HG

2p�l�k;k�x; y; z� with the same coef-
ficients B�p; l; k� but an additional �=2 phase factor:

�LG
p;l �r;�; z� �

X2p�l
k�0

eik��=2�B�p; l; k��HG
2p�l�k;k�x; y; z�:

(4)

As in the representation of SU(2) coherent states, we
utilize the phase factor ’ to characterize a new family of
GCSs:

�CS
p;l�x;y; z;’� �

X2p�l
k�0

eik’B�p; l;k��HG
2p�l�k;k�x;y; z�: (5)

The GCSs in Eq. (5) exhibit a traveling-wave property. The
standing-wave representation of the GCSs is given by
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The GCSs represent a general family to comprise the HG
and LG mode families as special cases. More importantly,
the GCSs with the particular phase factor can reveal the
patterns with hyperbolic caustics. It is worthwhile to men-
tion that the present GCSs are intimately correlated to the
Hermite-Laguerre Gaussian (HLG) beams described by
Abramochkin and Volostnikov [18]. The HLG modes are
the superposition of HG modes with a fixed relative phase
factor of �=2 but different amplitude factors, whereas the
present GCSs are the superposition of HG modes with a set
of fixed relative amplitude factors but different phase
factors. Unlike the GCSs, the orientations of symmetrical
axes of the HLG modes are rotated with the transformation.
Although the HLG modes can be shown to be completely
identical to the GCSs with a coordinate rotation about the
origin, the representation of the GCSs is more elegant to
interpret the experimental patterns.

We applied the GCSs to explain the experimental results
and found that the observed vector pattern can be fittingly
described as

~E�x; y; z� � �cos
4;30�x

0; y0; z; 0:235��x̂

� ��sin
4;30�x

0; y0; z; 0:235��

��cos
3;32�x

0; y0; z; 0:235��	ŷ; (7)

where x0 � �x� y�=
���
2
p

and y0 � ��x� y�=
���
2
p

. Figure 2
depicts the numerically reconstructed patterns for the ex-
perimental results shown in Fig. 1. The good agreement
between the reconstructed and experimental patterns con-
firms that the GCSs provide a realistic description for the
FIG. 2. Numerically reconstructed patterns for the experimen-
tal results shown in Fig. 1.
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optical coherent waves in the mesoscopic regime. We use
the analytical function given in Eq. (7) to visualize the
experimental polarization vector pattern. Figure 3 displays
the numerically calculated polarization vector field for the
observed pattern, where different colors are used to high-
light the polarization directions. It is seen that the polar-
ization vector field exhibits a complex interlace pattern.
The polarization vector fields for two small regions are also
plotted to visualize the fine details of the polarization
singularities. The polarization streamlines around the sin-
gularities generally display swirling features. To our
knowledge, polarization singularities involving the high-
order Gaussian beam are analyzed and visualized for the
first time.

Vector point singularities are conventionally described
in terms of the phase field ��x; y� � arctan�Ey=Ex�, where
Ex and Ey are the scalar components of the vector field ~E
along the x and y axes. The vortices of ��x; y� are the
vector singularities at which the orientation of the vector of
~E is undefined. An essential constraint obeyed by vector
singularities is the sign rule that adjacent singularities on
any contour of constant phase must have opposite signs
[19]. Figure 4 depicts the contour plot of phase field
��x; y� for the boxed regions shown in Fig. 3 to confirm
the sign rule. From Fig. 4, it can be also found that all
saddle points are to be open saddles with no joined arms.
Since no closed saddles are found in the experimental
vector field, no phase extrema are observed. As discussed
FIG. 3 (color online). Numerically calculated polarization vec-
tor field for the observed patterns.
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FIG. 4 (color online). Contour plot of phase field ��x; y� for
the boxed regions shown in Fig. 3 to confirm the sign rule.
Positive and negative index singularities are labeled by their
signs � and �, respectively.
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in Ref. [19], the phase extrema are really rare because there
is little room left in the phase field to accommodate them.

In summary, we have used a highly isotropic microchip
laser with a large Fresnel number to generate a polarization
vector field. With the representation of the SU(2) coherent
state, we have originally developed the GCSs to recon-
struct the experimental observation and to visualize the
polarization vector singularities in a manifest way. The
present results indicate that the GCSs constitute a useful
family of quantum states for the 2D harmonic oscillator
with spin-orbit interactions.
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